Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

### Benzyl *tert*-butoxycarbonyl-*α*-aminoisobutyrate

#### Anne-Marie Leduc, Mark S. Mashuta\* and Arno F. Spatola

Department of Chemistry, University of Louisville, Louisville, KY 40292, USA Correspondence e-mail: msmashuta.xray@louisville.edu

Received 7 November 2000 Accepted 15 January 2001

The small synthetic peptide, benzyl 2-(*tert*-butoxycarbonylamino)isobutyrate,  $C_{16}H_{23}NO_4$ , has the  $\alpha$ -helical conformation [ $|\varphi| = 55.8 (2)^{\circ}$  and  $|\psi| = 37.9 (2)^{\circ}$ ] observed in peptide fragments of peptaibols containing the  $\alpha$ -aminoisobutyric acid (Aib) residue. The structure shows no intramolecular hydrogen bonding, which would disrupt the limited conformational freedom associated with this amino acid. Two weak intermolecular hydrogen contacts are observed.

### Comment

The  $\alpha$ -amino acid  $\alpha$ -aminoisobutyric acid (Aib) is a major constituent of several natural products, including peptaibols, a class of antibiotic peptides isolated from the Trichoderm species (Mueller & Rudin, 1968). The presence of a methyl group in place of an H atom at  $C_{\alpha}$  has been shown to create severe restrictions in the conformational space of Aib (Paterson *et al.*, 1981). The  $\varphi$  and  $\psi$  values [ $(\varphi, \psi) = (-55^\circ;$  $-45^\circ)$  and  $(\varphi, \psi) = (-60^\circ; -30^\circ)$ ] for the torsional angles of the Aib residue are characteristic of  $\alpha$ - or 3<sub>10</sub>-helices, respectively, with the preferred secondary structure dependent on chain length, peptide composition, and the positions of the Aib residues (Toniolo & Benedetti, 1991; Van Roey *et al.*, 1983).



Toniolo has previously reported the X-ray crystal structure of the simple Aib derivative Cbz–Aib–OtBu (Crisma *et al.*, 1995). In this work, we describe the structure of an isomer of this compound, *i.e.* Boc–Aib–OBzl, (I), in which the aliphatic and aromatic moieties are interchanged. There is no intramolecular hydrogen bonding in either compound and as a result, the folding in both structures shows similar  $\alpha$ -helical

## organic compounds

conformations. In comparison, the torsion angles are  $(\varphi, \psi) = [-55.8 (2)^\circ; -37.9 (2)^\circ]$  for the title compound and  $(-50.8^\circ; -39.3^\circ)$  for the Cbz derivative. Intermolecular contacts of different types are, however, observed between Boc-Aib-OBzl and Cbz-Aib-OtBu. The Cbz derivative forms one intermolecular hydrogen bond between the NH and the carbonyl oxygen, O3, of the amide. The overall result is an extended hydrogen-bonding network. In contrast for the title compound, N1 donates one H atom to the ether oxygen, O1, of an adjacent molecule in the unit cell to form a weak hydrogen bond [H1 $n \cdots$ O1 2.60 (3) Å]. There are two of these intermolecular hydrogen-bond contacts between two molecules in the cell, resulting in a structure that resembles a cyclic dimer.





*ORTEP-3* (Farrugia, 1997) diagram of (I) showing 45% displacement ellipsoids. H atoms, except for the amide NH atom, have been omitted for clarity.

### Experimental

The title compound was synthesized by esterification of Boc–Aib– OH (1.0 equivalents) with dicyclohexylcarbodiimide (1.1 equivalents), benzyl alcohol (1.1 equivalents) and a catalytic amount (0.1 equivalents) of 4-dimethylaminopyridine in dichloromethane (Hassner & Alexanian, 1978). Crystallization was from an ethanol solution to which had been added a very small amount of water (3 drops) until turbid. The mixture was allowed to stand overnight at 281 K.

| Crystal | data |
|---------|------|
|---------|------|

| $C_{16}H_{23}NO_4$ $M_r = 293.35$ Triclinic, $P\overline{1}$ $a = 9.273 (3) \text{ Å}$ $b = 9.333 (3) \text{ Å}$ $c = 10.372 (4) \text{ Å}$ $\alpha = 94.16 (2)^{\circ}$ $\beta = 112.17 (2)^{\circ}$ | Z = 2<br>$D_x = 1.180 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation<br>Cell parameters from 25<br>reflections<br>$\theta = 15.0-18.0^{\circ}$<br>$\mu = 0.084 \text{ mm}^{-1}$<br>T = 293 (2)  K<br>Plate achecies |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V = 825.9 (4) \text{ Å}^3$                                                                                                                                                                           | $0.49 \times 0.33 \times 0.17 \text{ mm}$                                                                                                                                                                       |
| Data collection                                                                                                                                                                                       |                                                                                                                                                                                                                 |
| CAD-4 diffractometer                                                                                                                                                                                  | $R_{\rm int} = 0.007$                                                                                                                                                                                           |
| Data from $\omega/2\theta$ scans                                                                                                                                                                      | $\theta_{\rm max} = 25^{\circ}$                                                                                                                                                                                 |
| Absorption correction: empirical                                                                                                                                                                      | $h = 0 \rightarrow 11$                                                                                                                                                                                          |
| <i>via</i> $\psi$ scan (North <i>et al.</i> , 1968)                                                                                                                                                   | $k = -11 \rightarrow 11$                                                                                                                                                                                        |
| $T_{\min} = 0.94, \ T_{\max} = 0.99$                                                                                                                                                                  | $l = -12 \rightarrow 12$                                                                                                                                                                                        |
| 3043 measured reflections                                                                                                                                                                             | 3 standard reflections                                                                                                                                                                                          |
| 2846 independent reflections                                                                                                                                                                          | frequency: 60 min                                                                                                                                                                                               |
| 2312 reflections with $I > 2\sigma(I)$                                                                                                                                                                | intensity decay: <0.5%                                                                                                                                                                                          |

# organic compounds

Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0340P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.048$ | + 0.4831P]                                                 |
| $wR(F^2) = 0.116$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.011                       | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 2846 reflections                | $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$    |
| 195 parameters                  | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ |
| H atoms treated by a mixture of | Extinction correction: SHELXL97                            |
| independent and constrained     | (Sheldrick, 1997)                                          |
| refinement                      | Extinction coefficient: 0.249 (9)                          |
|                                 |                                                            |

| Tabl | e 1 |
|------|-----|
|------|-----|

Selected geometric parameters (Å, °).

| N1-C12                                                                                                          | 1.346 (2)                                                                                          | O2-C8                                                                    | 1.194 (2)                                                                              |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| N1-C9                                                                                                           | 1.454 (2)                                                                                          | O3-C12                                                                   | 1.202 (2)                                                                              |
| O1-C8                                                                                                           | 1.338 (2)                                                                                          | O4-C12                                                                   | 1.341 (2)                                                                              |
| O1-C7                                                                                                           | 1.459 (3)                                                                                          | O4-C13                                                                   | 1.477 (2)                                                                              |
| C1-C7                                                                                                           | 1.489 (3)                                                                                          | C8-C9                                                                    | 1.521 (3)                                                                              |
| $\begin{array}{c} C12-N1-C9\\ C9-N1-H1N\\ C8-O1-C7\\ C12-O4-C13\\ O1-C7-C1\\ O2-C8-O1\\ O2-C8-C9\\ \end{array}$ | 122.40 (17)<br>119.4 (17)<br>115.00 (16)<br>121.49 (16)<br>108.56 (17)<br>123.5 (2)<br>123.25 (19) | O1-C8-C9<br>N1-C9-C8<br>N1-C9-C11<br>N1-C9-C10<br>O3-C12-O4<br>O3-C12-N1 | 113.11 (16)<br>111.10 (15)<br>111.53 (17)<br>107.66 (16)<br>126.05 (18)<br>123.80 (19) |

The H atom bonded to N1 was located on a difference map and was refined isotropically with  $U_{iso} = 1.3U_{eq}$ (attached N atom). H-atom positions were calculated using a riding model with  $U(H) = 1.2U_{eq}$ (attached atom) for the phenyl and methylene H atoms and  $U(H) = 1.5U_{eq}$ (attached C atom) for the methyl groups.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1988); cell refinement: *CAD-4 Software*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The X-ray equipment was purchased with assistance from the National Science Foundation (CHE-9016978).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1584). Services for accessing these data are described at the back of the journal.

### References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crisma, M., Valle, G., Formaggio, F. & Toniolo, C. (1995). Z. Kristallogr. 210, 636–637.
- Enraf-Nonius (1988). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst, 30, 565.
- Hassner, A. & Alexanian, V. (1978). Tetrahedron Lett. 46, 4475-4478.
- Mueller, P. & Rudin, D. O. (1968). J. Am. Chem. Soc. 217, 713-719.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Paterson, Y., Runsey, S., Benedetti, E., Nemethy, G. & Scheraga, H. A. (1981). J. Am. Chem. Soc. 103, 2947–2955.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Toniolo, C. & Benedetti, E. (1991). Macromolecules, 24, 4004-4009.
- Van Roey, P., Smith, G. D., Balasubramanian, T. M. & Marshall, G. R. (1983). Acta Cryst. C39, 894–896.